Assembler Language
c "Boot Camp"
Part 5 - Decimal and

Logical Instructions
SHARE 1n San Francisco

P
August 18 - 23, 2002
- Session 8185
m -
_j'

s

Introduction

_IWho are we?
= John Dravnieks, IBM Australia

= John Ehrman, IBM Silicon Valley Lab

= Michael Stack, Department of Computer
Science, Northern Illinois University

Introduction

_IWho are you?

= An applications programmer who needs to
write something in S/390 assembler?

= An applications programmer who wants to
understand S/390 architecture so as to better
understand how HLL programs work?

= A manager who needs to have a general
understanding of assembler?

_1Our goal is to provide for professionals an
introduction to the S/390 assembly language

Introduction

_I'These sessions are based on notes from a
course 1n assembler language at Northern
Illinois University

_1'The notes are 1n turn based on the textbook,
Assembler Language with ASSIST and
ASSIST/I by Ross A Overbeek and W E
Singletary, Fourth Edition, published by
Macmillan

Introduction

_1'The original ASSIST (Assembler System for
Student Instruction and Systems Teaching)
was written by John Mashey at Penn State
University

_IASSIST/I, the PC version of ASSIST, was
written by Bob Baker, Terry Disz and John
McCharen at Northern Illinois University

Introduction

_1Both ASSIST and ASSIST/I are in the public

domain, and are compatible with the
System/370 architecture of about 1975 (fine
for beginners)

_1Both ASSIST and ASSIST/I are available at
http://www.cs.niu.edu/~mstack/assist

Introduction

_1Other materials described in these sessions
can be found at the same site, at
http://www.cs.niu.edu/~mstack/share

_|Please keep 1n mind that ASSIST and
ASSIST/I are not supported by Penn State,
NIU, or any of us

Introduction

_1Other references used in the course at NIU:
= Principles of Operation
= System/370 Reference Summary
= High Level Assembler Language Reference

_IAccess to PoO and HLASM Ref is normally
online at the IBM publications web site

_IStudents use the S/370 "green card" booklet

all the time, including during examinations
(SA22-7209)

Our Agenda for the Week

_ISession 8181: Numbers and Basic
Arithmetic

_1Session 8182: Instructions and Addressing

_ISession 8183: Assembly and Execution;
Branching

Our Agenda for the Week

_ISession 8184: Arithmetic; Program
Structures

_ISession 8185: Decimal and Logical
Instructions

_ISession 8186: Assembler Lab Using
ASSIST/I

Today's Agenda

_1The SI and SS Instruction Formats
_IDecimal Arithmetic
_IInstructions for Logical Operations

_IWrap Up

C The SI and SS
Instruction Formats

i

y4

V
L
7
P

[

SI Instructions

_1'This format encodes the second operand as
an "immediate" data byte within the
Iinstruction

_!'The symbolic instruction format is
= | abel O0Omenoni cOCaddr ess, byt e

_I'The encoded form of an SI instruction is
- hCPhCPhIZhIZ hBlththth

SI Instructions

I MOVE IMMEDIATE is our first SI instruction

= | abel OOWI OOD(B, 1,

= Stores a copy of the immediate byte, | ,, at the
memory location given by D,(B,)

SI Instructions

_I'The second operand can be specified as a

decimal number or as any one-byte value
valid in DC

= Decimal: 91

= Hexadecimal: X' 5B’
® Binary: B' 01011011
= Character: C $'

_|For example, to place a single blank at
PLINE
= [OO0O0OO00OwVE OOPLE NE, C O

SI Instructions

_'The COMPARE LOGICAL IMMEDIATE
Instruction compares the byte in memory to
the immediate data byte as unsigned binary
numbers

= | abel OOCLI OOD,(B, I,

_|CLI sets the condition code in the same way
as other compare instructions

SI Instructions

_1'The following code sample scans an 80-byte
data area labelled CARD and replaces

blanks with zeros

N I

OO0 AL, CARDOACLCSt ar t Oscanlher e
OOOOOOOOOL ALOOE3, 80000 andOscan B0 byt es
SCANLLLOOCLT 0 (4) , € U ook or Chl ank
OOOOOOOBNELCBUMPLLOOOBr anchi f Chot bl ank
OOOOOO0OwvE 0o 4) , € 0 LUEl selichangelt o0
BUMPLILLOOL AL, 1(, 4) OOOVbvelk olnext Cbyt e
OOOOOOOOBCT L3, SCANLLCont | nueldf or 80
I I

SS Instructions

_IIn this format, which occupies 3 halfwords,
both operands reference memory locations,
and there is either one 256-byte-max length
or two 16-byte-max lengths

_' The symbolic instruction format is either
® label mnemonic addrl(len),addr? or
= label mnemonic addrl(lenl),addr2(len?)

SS Instructions

_IFach SS instruction is defined to have one of
the length formats; we will see only the
first for now

_I'The encoded form of an SS instruction is
= hCPhCPthL hBlththth hBZhDZhDZhDZD Or
= hCPh(PhLthZ hBlththth hBZhDZhDZhDZ

SS Instructions

_Very Important: the encoded length is one
less than the symbolic length (as well as
the effective length) and is referred to as the
"length code”

_I'Thus, in the first format, 1 to 256 bytes may
be specified where 0 to 255 is encoded

_An explicit length of O results in an encoded
length of 0, so the effective length is 1

20

SS Instructions

_IMOVE CHARACTERS i1s our first SS
instruction

= | abel OOMWCID,(L, B,), D B,)

= Copies from 1 to 256 bytes from the second
operand location to the first

SS Instructions

_|For example, to copy 8 bytes from the
location addressed by register 1 to 14

bytes beyond the location addressed by
register 12

= Symbolic: MWCLL14(8, 12), 0(1)
= Encoded: D20/7LCO0EL1000
= Note the encoded length!

22

SS Instructions

_Implicit addresses may be used, of course,
and with or without an explicit length

= OMVCLLOFI ELD1(15), FI ELD2
= [IIMVCLLLFI ELDL, FI ELDZ2

_!Both generate the same object code if
FI ELD1 (the first operand) has a "length

attribute" of 15, as in
= Fl ELDLLIIIDSOEITECLLS

23

SS Instructions

I Any explicit length will take precedence
over the implicit length derived from the
length attribute

_150, In the previous example the following
instruction will move only 8 bytes, even
though FI ELD1 has a length of 15
= WCLLOFI ELD1(8), FI ELD2

_IImplicit lengths change automatically when
data lengths changes

24

SS Instructions

_I'The effect of MVC is to replace L bytes
beginning at the first operand location with
a copy of the L bytes beginning at the
second operand location

_|'The target 1s altered, one byte at a time,
starting on the "left" (the beginning, or low,
address)

25

SS Instructions

_1'This means that the fields can overlap with
predictable results, and here i1s an
historically important example

_IThere is often a "print buffer' in which
output lines are constructed, and after
printing a line, the buffer should be cleared
to blanks (this assumes the PLINE has a
length attribute of 133, as it would if

PLI NE

DS

CL133 is used)

26

SS Instructions

_150, we would normally clear the buffer by
copying a string of blanks to it

= [HHOOwvCLLOPLE NE, =CL133" [

_!But by using the overlap, we can "save" 129
bytes
= [OC0O0WVIE OEOPLE NE, C U
= [OOOOOWMVCLOOPLT NE+1(132), PLINE

27

SS Instructions

_ISuppose FlI ELDLIDCLLIC 123456 What
is FIELD after MWCLIFI ELD+2(4), FI ELD ?

1 C 121212

SS Instructions

_IAnother SS instruction which uses the first
length format is COMPARE LOGICAL
CHARACTERS

= | abel OOCLCOD,(L, B,), DB,

_1As with all compares, this just sets the
condition code

_|'The operation stops when the first unequal
bytes are compared

29

‘ - Decimal Arithmetic

P

/' In Which We Switch to Counting
2 7 on Our Fingers or Toes
Instead of Our Hands

7
) 2

Decimal Data

_I'Thus far, the computations we've done have
been with binary data

_1'This 1s not always satisfactory, especially
when financial calculations are required

_IFor example, decimal percentages are

inaccurate in binary (try long division on
1/10,=1/1010, =1 000110011...)

_1'This (infinite repetition) annoys auditors

31

Decimal Data

_1'The solution 1s to use computers with
decimal data types and instructions

_I'There are two decimal data formats

= Zoned Decimal - associated with I/O
operations

m Packed Decimal - used for decimal arithmetic

32

Decimal Data

_| A zoned decimal number is a sequence of
bytes in which each byte has

® a decimal digit 0-9 in the right digit and

® g zone digit (hex F) in the left digit, except
that the rightmost zone 1s the sign

33

Decimal Data

_I'That 1s, a zoned decimal number has the
format

= 7ZdZdZd...sd where
»/ 1s the hex digit F
»d is a decimal digit 0-9
*S 1s the sign
-C, UA, OF, Oor Emeans + (Cis preferred)
- DOor B means - [J(D is preferred)

_IAn example is F1F2C3, for +123

34

Decimal Data

1A zoned number is very close to the
EBCDIC representation of its value, except
that the rightmost byte has a sign, so won't
print as a number

= So our zoned +123 prints as 12C

35

Decimal Data

_| A packed decimal number has the zones
removed and the sign switched with its
digit; that 1s,
= dddddd. . . ds

_INote that there are always an odd number
of digit positions in a packed decimal
number

_1'The assembler can generate data of types 4
(zoned) and P (packed)

36

Decimal Data

1| abe

DC

HN

I

[IDC

P +123" [
P -1. 2" L

(PL2" 1234

LImPLn’

Ll L]] O

LZLn' Z'
7' +123" I FLHOFIF2C3
ZL3' -1. 2" I FUFOF1D2

W

1123C
012D

234C

37

The PACK and UNPK Instructions

_1Both of these are SS instructions of the
second type - that 1s, each operand has a
length field which will accommodate a
length code of 0- 15 (so the effective length

is 1- 16 bytes)

38

The PACK and UNPK Instructions

_1Use the PACK instruction to convert a
number from zoned decimal to packed
decimal

_1Use the UNPK instruction to convert a

number from packed decimal to zoned
decimal

39

The PACK and UNPK Instructions

1 | abel OOPACKOD,(L,, B,), D(L,, B,)

= The rightmost byte of the second operand is
placed in the rightmost byte of the first

operand, with zone (sign) and numeric digits
reversed

= The remaining numeric digits from operand 2
are moved to operand 1, right to left, filling
with zeros or ignoring extra digits

40

The PACK and UNPK Instructions

- ‘ D5D4‘ D3D2‘ Dlsl <- ‘ ZDs‘ ZD4‘ ZDs‘ ZDZ‘ SDll

m where each 'Z' is a zone F

1 PACKLOIB(1), B(1) exchanges a byte's
digits

The PACK and UNPK Instructions

1 PACKLLP(3), Z(4)
= [OOOOOOEER(3) Uik- - - - O
m Before: [1??20072?2[12?0LLF5
= After: 1 LOS5LA3R2DULLLFS

(Z(4) [
F4LF3
FALF3

HN
D2
D2

1 PACK

P(2),Z(4)

= [

]

= Before:

= After:

[]

TP(2)
2017

k- - - -
RS

A3[R2C

RS

(Z(4) 0
F4LF3

FALF3

]
[IC2

[IC2

42

The PACK and UNPK Instructions
1 | abel OOUNPKID,(L,, B, D,(L,, B,)

= The rightmost byte of the second operand is
placed in the rightmost byte of the first
operand, with zone (sign) and numeric digits
reversed

= The remaining numeric digits from operand 2
are placed in the numeric digits of operand 1,
and the zone digits of all but the rightmost
byte of operand 1 are set to F, filling with
X FO' orignoring extra digits

43

The PACK and UNPK Instructions

- ‘ ZDS‘ ZD4‘ ZDs‘ ZDzl SD1| <- ‘ D5D4‘ D3D2| Dls‘

m where each 'Z' is a zone F

1 UNPKLOOB(1), B(1) exchanges a byte's
digits

The PACK and UNPK Instructions

1 UNPK
= [
= Before:
= After: L

_1 UNPK
= [
= Before:
= After: [

L]
177
F1

L]
77

FO

[Z(5), P(3)

T1Z(5)
2R?
F20F3

[Z(4), P(2)

(Z(4) [
2?01?27

F10F2

2?01?27
F4ALICS

K- - - -
Hrgdiin

3L

LI
BC
BC

L
LI

[P(3)
12[134
12134

TOP(2) 000
11 2[1BF
112[1BF

45

The CVB and CVD Instructions

_I'These two RX instructions provide
conversions between packed decimal and
binary formats

_IWith PACK and UNPK, we can now convert
between zoned and binary formats

46

The CVB and CVD Instructions
1 | abel OOOCVBOOR,, Dy(X,, B,)

= Causes the contents of R, to be replaced by the
binary representation of the packed decimal
number in the doubleword (on a doubleword
boundary) addressed by operand 2

_| A data exception (0007) occurs if operand 2
1s not a valid packed decimal number

_| A fixed-point divide exception (0009) occurs
if the result is too large to fit in a 32-bit word

47

The CVB and CVD Instructions

For example:

CVBLILIS, Z
VA DS 0D
DCLLLEPLE' - 2°

will convert 000000000000002D at location Z
(data type D has doubleword alignment)
to FFFFFFFE in register 3

48

The CVB and CVD Instructions

_ | abel CVDLLR,, D,(X,, B,)

= Causes the contents of the doubleword (on a
doubleword boundary) addressed by operand
2 to be replaced by the packed decimal
representation of the binary number in R,

_INote that the "data movement" is left to
right (like ST)

_1'The exceptions which apply to CVB (0007
and 0009) do not apply to CVD

49

Numeric Data Conversion Summary

JO000Dat ald nOOO00OPACKOOODat ald nIOOOOO0OOCYBOOOO O Dat all n
--->[characterF------- >[packedldeci mal [} ------- >[bi nary
COOOOCF or mat ODOHOOOOOOOOCF or mat HOOHOOOOOOOOOOOOOCS or mat
INEE RN NN NN pEEEEEEEEEEEEEEEEEEEEEEEE
IR NN/ AN EEEEEEEEEEEEEEEENY

OO0 OOOOOOO O OOOOOOOOOOOPer £ or nriOOIDOOOOOOOOOOO0Per f or m
OO OO OO0 e ac k e d DOOOOOOOOO0OOOOOO0 b nar y
OO0OOOOOOOOOO O OOOOOOCOOO 0 ar 1t hret 1 c DO0OOOOOOO0O00C&r i t hnet i ¢
L e
IR NN/ AE NN EEEEEEEEEEEnY
OResul t sO nOOUNPKOOOORes ul t s nOOOO0OOCVDUOResul t s n
<---[ZonedIKk-------- [packedldeci mal [K-------- [bi nary
OO0 or mat DHOOOOCEDN THOOCF or nat HOOOHOOOOOOOOOOOOOC or mat

Getting results in nice character format, instead
of just zoned, requires use of EDIT instruction

50

Decimal Arithmetic

_I'The box encloses the only subject on the
previous slide which remains to be
addressed: decimal arithmetic

_I'There isn't enough time to cover the decimal
arithmetic instructions in detail, but they all
have the following characteristics

51

Decimal Arithmetic

_I'Two memory operands, each with its own
length

_1Condition code is set similar to binary
equivalents

_1In almost all cases (except operand 1 in
Z.AP), the operands must be valid packed
decimal numbers, else an interrupt 0007
occurs (very popular!)

52

Decimal Arithmetic

_|IHere are the available instructions
= AP - ADD DECIMAL
= CP - COMPARE DECIMAL
= DP - DIVIDE DECIMAL
= MP - MULTIPLY DECIMAL
= SRP - SHIFT AND ROUND DECIMAL
= SP - SUBTRACT DECIMAL
m ZAP - ZERO AND ADD DECIMAL

_IWith the possible exception of SRP, these
are easy to understand - see PoO

53

Instructions for
Logical Operations

To Which We Must Say Yes
or No

\

The Logical Operations

_1Consider the four possible combinations of 2

bits
= [O00a =00 DOO0o Do, oec
= [0 =00 DooH CIoeoo L

1

1

_I'These lead to the following binary relations

= alJANDLb =10 LHHH0 LIEHEO LI
= allORb [=10 L i1, tee
» a[XORb =0 LIt

1

1

0

55

The Logical Operations

_1And these relations lead to the following
twelve new 1nstructions:

RR RX SI SS
Format Format Format Format

AND NR N NI NC

Operation

OR OR O O oC

Operation

XOR XR X X XC

Operation

The Logical Operations

anyt-hmg itself Zero one
with
It remains lt1s It remains
AND changed to
unchanged unchanged
Zero
It remains | It remains 1t 1s
OR changed to
unchanged |unchanged
one
It 1s . .
XOR changed to It remains | It 1s
ZeTo unchanged| inverted

57

The Logical Operations

_IAll twelve mnstructions set the condition
code:
m 0 - Result is zero
m 1 - Result 1s not zero

_1As an example, to change a zoned decimal
number to EBCDIC, we have to force the
rightmost zone to be F instead of a sign; so,
1f ZNUM 1s a three-byte zoned number, the
following instruction will work: (why?)
= OO0 OOOCZNUMEZ, X FO!

58

The Logical Operations

_I'To zero a register, we normally use SR, but
a faster way to zero Rb (for example) is

= [HEOOEEEXROOEES, 5

_1To set bit O of BYTE to 1 while leaving the
other bits unchanged
» [IHOOO0000 OOOOBYTE, B' 10000000

_1'To set bit 0 of BYTE to O while leaving the

other bits unchanged
= [OOOOOOON OOOCBYTE, B' 01111117°

59

The Logical Operations

_1To invert bit O of BYTE to 1 while leaving

the other bits unchanged
= [OO0OOCOCXI OOBYTE, B 10000000

_I'To round the address in R7 down to the
previous fullword boundary

= [HEHEENCEE7,, =X FFFFRFFFC

_I'To round it up to the next fullword boundary

= [OOOOCE ALz, 3(, 7)
= HHHHOENOOdy, =X FRFFFFFC

60

The Logical Operations

_I'To exchange the contents of two registers
without using any temporary space, use XR
three times, alternating registers

_Memory contents can be exchanged
similarly by using XC instead of XR

EIXROOOER, 3LEXchange
OOEXROC, 2000cont ent s Oof [
CXROCE2, 30 eqi st er s 2Jand3

61

The Logical Operations

_IHere's how that works, demonstrated using
'mini" registers with all four posible bit
combinations

LHOOR2 OE X ROGHHORS LECEX RO R L EIXROGCETIRS

OLOL1 =IO Lo L (1AL [0
DDD@DDDDDDDDDDDDI 1] EREEN
HNNLI EEREENEN INRENEN

OL1L1LO LHotio tn

62

The TEST UNDER MASK Instruction

1| abel

[ML

Di(By), I,

_I'TM sets the condition code to reflect the
value of the tested bits (those
corresponding to 1-bits in the | , operand)

m O - Selected bits all zeros, or the | , mask was

Zero

m 1 - Selected bits mixed zeros and ones
m 2 --- (not set)
m 3 - Selected bits all ones

63

The TEST UNDER MASK Instruction

_INote that after TM, the extended branch
mnemonics are interpreted as

m BZ - Branch if tested bits are Zeros, or mask is
Zero

= BM - Branch if tested bits are Mixed zeros and
ones

= BO - Branch if tested bits are Ones

64

The TEST UNDER MASK Instruction

_I'To determine if the first bit of BYTE is one
(OO0 MOOOBYTE, B 10000000

_ITo check if BYT’

X'40')

i, is zero or blank (X'00' or

= oo MIOOBYTE, B 1011111171°
= OB EBLKZRO

65

‘ Wrap Up

Py

" In Which We Learn That
Only a Small Fraction of the
ﬁ Assembler Language Has

Been Covered
a% -~
) 28

Summary

_IFive hours 1s just a start, but a good one

_1'The one-semester course at NIU has
= More than 35 hours of lecture
= A dozen programs (almost one each week)
®m Three exams

_1'The second course 1s Data Structures, and
all program assignments are in assembler

= This is good reinforcement

67

What Wasn't Covered

_IShift instructions, logical and arithmetic

_ Frequently used, but difficult instructions
= Edit (ED) and Edit and Mark (EDMK)
= Execute (EX)
= Translate (TR) and Translate and Test (TRT)

_|Floating point instructions
= Hexadecimal (the original)
= Binary (IEEE standard, recently added)

68

What Wasn't Covered

_IMany general instructions added over the
past twenty-five years, such as

= Relative BRANCH instructions (no base
register needed)

® Instructions which reference a halfword
(immediate) operand within the instruction

= Instructions to save and set the addressing
mode (24-bit or 31-bit)
= And, most recently, the z/Architecture

instructions to deal with 64-bit registers and
addresses

69

What Wasn't Covered

_| Privileged instructions

_1'The macro language, including conditional
assembly (also available outside macros)

_1'The USING instruction, extended to allow
1mplicit addresses everywhere

_kExternal subroutines and register save area
linkage conventions

70

Nevertheless...

_You now have a basic understanding of
S/390 and z/Architecture

_You have seen what comprises a program
written 1n assembler language

I And you are ready, if you wish, to begin
writing programs and go on to the next step

1950, ...

71

Congratulations!

